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Abstract

When was the United States a land of opportunity? This paper revisits the history of
intergenerational mobility in the US, accounting for the impact of imperfectly linked census
data. Incorrectly linked observations typically attenuate ordinary least squares (OLS) esti-
mates, such as the association of income ranks among fathers and sons. This attenuation
exaggerates levels of mobility, as mobility is inversely related to the strength of the relation-
ship between parents’ and children’s outcomes. I address bias due to imperfectly linked data
from the perspective of nonclassical measurement error and propose a class of models for
misclassification—error in discrete data—that rely on a repeated, conditionally independent
measure of the misclassified variable. A natural source for such a repeated measure can be
found by linking observations into an additional sample. In a validation exercise, the proposed
estimator reduces bias by 50-90% relative to OLS, with a larger reduction in bias on more
severely misclassified samples. After correcting for misclassification error, estimates of the
rank-rank slope of occupation status for White men born between 1832 and 1910 are 50-100%
higher than OLS estimates, depending on the cohort. Revised estimates suggest a U-shape
pattern for intergenerational mobility in US history. Individuals born before the Civil War
experienced levels of mobility comparable to the present, while those born between the Civil
War and WWI—who entered the workforce during the highest levels of inequality in the US
before the present—experienced lower levels of mobility than in any region in the US today.

∗Department of Economics, Harvard University. Email: mattheis@g.harvard.edu. I am especially grateful to my
advisors, Claudia Goldin, Larry Katz, Ed Glaeser, and Isaiah Andrews, for their kindness, guidance, and generous
support. I thank Alex Albright, Yong Cai, Kevin Chen, Raj Chetty, Lindsey Currier, Melissa Dell, Michael Droste,
James Feigenbaum, Martin Fiszbein, Grant Goehring, Bob Margo, Nathan Nunn, Dev Patel, Deniz Sanin, Ursina
Schaede, Rahul Singh, Jesse Shapiro, Neil Shepard, Marco Tabellini, Elie Tamer, Davide Viviano, Chris Walker,
David Yang, and Noam Yuchtman for lending their brilliance and insight. I am grateful for financial support
through the Thomas Cochran Fellowship in Business and Economic History. All errors are mine.

https://ramattheis.github.io/files/jmp_mattheis.pdf
mailto:mattheis@g.harvard.edu


The main danger of making such comparisons [of constructed historical data and more
nearly accurate modern data] may be to overestimate how much the economy has changed.

(Romer, 1986, p. 32) “Spurious Volatility in Historical Unemployment Data”

1 Introduction

When, if ever, did the United States economy deliver on the promise of opportunity? The recent

large-scale digitization and linking of historical census data provide social scientists a powerful

tool to address questions like this in American history (Ruggles et al., 2018; Abramitzky et al.,

2021a). Work using this new resource has found exceptionally high rates of intergenerational

mobility among White men born before the Civil War, and relatively stable levels of mobility

thereafter (Long and Ferrie, 2013; Song et al., 2019). This pattern may be surprising given the

sweeping changes in the economy over the last 150 years, including technological advancement

(Gordon, 2016), the amassing of capital (Gallman and Rhode, 2020), growth in organizational

complexity (Chandler, 1977), urbanization (Glaeser, 2012), changes in the returns to and levels of

human capital (Goldin and Katz, 2008), waves of immigration (Abramitzky and Boustan, 2022),

and the rise, fall, and return of inequality (Lindert and Williamson, 2016; Piketty, 2014). Yet

comparing levels of mobility between the past and present is complicated by the fact that histor-

ical data are often less reliable than modern data. Linked historical census data are imperfect,

with linked samples covering only 25-50% of the population and false positive rates—in which

linked observations do not correspond to the same individual—of 15-40% (Bailey et al., 2020a).

Both sources of error in record linkage may lead to bias in subsequent estimates, including the

parent-child associations of status often used to measure mobility.

In this paper, I propose a methodology to address biases due to imperfectly linked data, and

I find estimates that suggest a qualitatively different history of intergenerational mobility in the

United States. Previous estimates of the rank-rank slope are substantially attenuated relative to

the truth: standard estimates are attenuated by 50% for cohorts born in the mid-19th century

and by 30% for those born at the turn of the 20th century relative to my estimates. Consequently,

I find levels of mobility among cohorts of White men born before the Civil War comparable to

the present and exceptionally low levels of mobility among cohorts born between the Civil War

and World War One. Trends in mobility follow a U-shape pattern, with levels of mobility falling

among cohorts born in mid-19th century, lowest among those born around the turn of the 20th

century, and rising to modern levels. This new pattern reveals a previously obscured negative

association between mobility and inequality across time in the US, consistent with the “Gatsby

curve” documented across modern economies (Corak, 2013; Durlauf et al., 2022).
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Imperfectly linked data can bias downstream estimates in two ways: linked samples may be

nonrepresentative if less than the full population is linked, and linked samples are contaminated

if some of the linked observations do not correspond to the same individual.1 Nonrepresen-

tativeness in linked data is well studied (Bailey et al., 2020b) and similar to the challenge of

estimation and inference with nonrepresentative samples across the social sciences (Beresovsky

et al., 2024).2 While bias from nonrepresentativeness in linked samples is an important concern,

this paper focuses on the impact of linkage errors in the final sample. To the extent that there is

a trade-off between constructing larger, more representative linked samples and linked samples

with lower rates of false positive links (Abramitzky et al., 2021a), my proposed methodology re-

duces the “marginal cost” of false positive links, potentially allowing researchers to choose more

representative samples.

Contamination from incorrect links affects analysis in a way that may be counter-intuitive. It is

widely understood that classical measurement error—additive and independent of the unobserved

true value—attenuates estimates towards zero when present in the regressor, while similar errors

in the outcome do not lead to bias. In contrast, when false positive links are independent, the

resulting errors in variables are highly nonclassical and lead to attenuation bias whether errors

are in the regressor or the outcome.3

To illustrate this source of bias, consider the following example. Suppose a researcher would

like to estimate the return to schooling where educational attainment is observed in one source,

income is observed in another, and—lacking a unique identifier—the researcher links observations

using information like name and age. If names are not strongly associated with earnings, the

income observed for an incorrect link will not depend on whether the linked individual has nine

or eighteen years of education. Consequently, measurement error in income will be negatively

associated with the level of educational attainment and estimates of the return to schooling will

be attenuated.

To address bias from contamination in imperfectly linked data, I propose a class of misclassifica-

tion models that build on results in the nonclassical measurement error literature. Measurement

1I discuss a simple bias decomposition that more concretely illustrates the role of each source of bias due to
imperfectly linked data in OLS estimates in Appendix A.1.

2If selection into the linked sample is based on observed characteristics, researchers can re-weight the linked sample
to mitigate bias from nonrepresentativeness, as is common across the empirical social sciences. For example, it
is often challenging to link Black Americans across historical US censuses, and coverage of Black Americans
remains a challenge in modern censuses (Sabety and Spitzer, 2023). In a more extreme example, women have
generally been excluded from linked samples due to the convention of changing surnames at marriage. Recent
work including women in large-scale samples has relied on additional sources sources including marriage records,
social security applications, and genealogical information (Bailey et al., 2023; Althoff et al., 2024; Buckles et al.,
2023).

3For incorrectly linked data, the difference between error in one variable or another is largely semantic. For any
linked data connecting two sources, the researcher may choose to define the variables in either source as correctly
observed while variables in the other source may be contaminated by errors in record linkage.
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error in a discrete variable like occupation is called misclassification and is inherently nonclas-

sical.4 I consider a setting in which we observe a discrete regressor and two noisy measures

of a discrete latent outcome. For example, the regressor may be father’s occupation while the

outcome is son’s occupation and noisy measures come from observations in two, potentially imper-

fect, linked samples. When the regressor and the observed outcomes are independent conditional

on the true value of the outcome, we can recover the true relationship between regressor and

the unobserved, correctly measured outcome.5 I then introduce a set of parametric misclassifica-

tion models that build on the particular pattern of errors that result from record linkage errors.

Adding structure to the model of misclassification allows me to consider more granular variables,

such as narrower categories of occupations, that would otherwise pose challenges to estimation

and inference due to the high dimensionality of the nonparametric model.

The proposed approach can be applied in any setting in which a repeated measurement sat-

isfying the identifying assumptions is available. This approach does not require access to the

information underlying the generation of linked data, such as the names, addresses, or other

identifying information that is often restricted for reasons of privacy. Additionally, the estimator

does not rely on a generative model of linked data, which requires identifying and estimating

a vast number of cumbersome quantities, like the probability that an individual named Francis

Sinatra appears as “Frank” in the census, or a Francis Fitzgerald is recorded as “F Scott”.

The likelihood in the model is a simple function of a tabulation of the data, counting each

combination of values for the regressor and the noisy measures of the latent outcome. Con-

sequently, the model lends itself naturally to estimation by maximum likelihood. To measure

intergenerational mobility, I first estimate the joint distribution of father’s and son’s occupations

in a misclassification model. I then plug in these estimates and a ranking of occupations to arrive

at an estimate of the rank-rank slope of father’s and son’s occupation status.6 I implement the

4Misclassification error is necessarily nonclassical. Recall that classical measurement error refers to errors that are
additive and independent of covariates. To illustrate why misclassification is always nonclassical, consider a binary
latent variable X with observed value X̃. Measurement error ϵ := X̃ −X takes values in {−1, 0} conditional on

X = 1 and in {0, 1} conditional on X = 0. Clearly then, measurement error in X̃ is only classical if it is always
zero.

5Hu (2008) provides sufficient conditions to nonparametrically recover the distribution of regressor and the latent
outcome as well as the conditional distributions of the misclassified variables given the latent truth. In the setting
considered in this paper, three assumptions are sufficient. First, each noisy measure and the regressor should
be mutually independent conditional on the latent outcome and an optional set of controls. While measurement
error is immediately nonclassical in this setting because all variables are discrete, the continuous analogue of
this condition is also a relaxation of classical measurement error, since the noisy measures can depend arbitrarily
on the value of the latent outcome. Second, the noisy measures should be more likely than not to report the
correct value. The last assumption simply requires that the distribution of values of the regressor, such as father’s
occupations, not be identical for any two values of the latent outcome, such as son’s occupations.

6My approach is not limited to estimating the rank-rank slope, the interpretation of which has been a recent topic
of debate (Chernozhukov et al., 2024). The last step in the estimation procedure can be substituted with any
function of the joint distribution of the regressor and latent outcome.
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estimator through a new R package created for this purpose.7

I evaluate the maximum likelihood estimator for the misclassification model in a validation

exercise that mirrors the challenge of historical record linkage. Specifically, I add synthetic noise

to multiple copies of the complete count 1940 census before linking subsets of those copies together

with standard algorithms (Bailey et al., 2020b). Consistent with the bias decomposition in (10),

I find that OLS estimates are attenuated roughly in proportion to the share of false-positive links

in each sample. Estimates accounting for misclassification due to imperfectly linked data reduce

bias relative to OLS estimates by between 50% and 90%, with proportionally larger improvements

for more highly contaminated linked data. Importantly, the validation exercise does not impose

the identifying assumptions in the misclassification model. The validation results suggest that

the proposed approach can substantially reduce bias due to imperfect record linkage, even if the

identifying assumptions are mildly violated.

Finally, I apply my methodology to study intergenerational mobility among White men born

between 1833 and 1910. Flexible estimates of occupational misclassification suggest that errors

in record linkage substantially bias the observed distribution of fathers’ and sons’ occupations.

When I impose more structure on the model of misclassification, I find estimates of false positive

linkage rates around 40%, slightly higher than estimates of false positive rates coming from high

quality ground truth samples (Bailey et al., 2020a).

After correcting for misclassification due to imperfectly linked data, estimates of the rank-

rank slope of occupation status for fathers and sons are substantially higher than OLS estimates

throughout the period.8 To benchmark levels of mobility based on rank-rank slopes, we can

compare them to estimates across commuting zones in the modern US, the vast majority of

which fell between 0.24 and 0.4 (Chetty et al., 2014a).9 I find rank-rank slopes of around 0.3

among cohorts born before the Civil War, compared to OLS estimates of around 0.15 in the

same samples. Rank-rank slopes of 0.3 roughly match levels in the US today, whereas a rank-

rank slope of 0.15 is considerably lower than the most mobile localities. Revised estimates of

the rank-rank slope rise into the early twentieth century, roughly in parallel with OLS estimates.

The relative increase in the period is smaller than OLS, potentially reflecting increases in the

7The package is available at https://github.com/ramattheis/misclassifyr/.
8I structure the model of misclassification for these estimates so that the latent outcome corresponds to son’s
occupation at a point in time. Consequently, estimates of the rank-rank slope in this paper do not directly
address concerns related the well-studied life-cycle bias in estimates of intergenerational mobility Lee and Solon
(2009). Concerns about life-cycle bias are partially mitigated by observing sons’ outcomes later in adulthood and
by using occupation to define the rank rather than income, which may be thought to be relatively less noisy across
time. The methodology in this paper could be extended to explicitly incorporate life cycle patterns in outcomes
that may otherwise bias estimates of mobility, though this is left to future work.

9Two differences complicate the direct comparison of my estimates of the rank-rank slope with those in Chetty et al.
(2014a). First, I use rankings based on occupations rather than averages of income, as individual-level income
isn’t observed in national censuses before 1940. Second, I define occupation ranks in the population rather than
in the sample.
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quality of census data later in the period. For cohorts born around the turn of the twentieth

century, I find estimates of the rank-rank slope of nearly 0.5, reflecting levels of mobility lower

than anywhere in the US today.

Connecting the revised estimates in this paper with modern estimates unaffected by high lev-

els of record linkage error, I find a U-shaped pattern of intergenerational mobility over the last

two centuries. My estimates suggest—contrary to famous examples of upward mobility during

this period, like Walter Chrysler or William Boeing—that individuals who entered the workforce

during the high levels of inequality in the Gilded Age, the Roaring ’20s, or the Great Depression

experienced exceptionally low levels of relative mobility.

Related Literature This paper contributes to two broad literatures: the measurement of in-

tergenerational mobility, and the challenge of learning when information about individuals is

scattered across sources.

First, this paper contributes to the literature on the measurement of historical mobility in

the United States (Ferrie, 2005; Long and Ferrie, 2013; Olivetti and Paserman, 2015; Feigen-

baum, 2018; Song et al., 2019; Collins and Wanamaker, 2022; Ward, 2023; Buckles et al., 2023).

Compared to the majority of the literature, I find substantially lower levels of intergenerational

mobility among cohorts born between 1830 and 1910. In particular, my estimates are inconsistent

with previous work which found exceptionally high levels of intergenerational mobility in the mid

19th century relative to today, though it still may be true that levels of mobility were high in the

US in that period relative to those in European countries (Long and Ferrie, 2013; Feigenbaum,

2018; Song et al., 2019).

The closest related paper is Ward (2023), which studies the role of racial gaps and measurement

error in occupations in intergenerational mobility in US history. Whereas Ward (2023) focuses

on the gap between White and Black Americans and assumes classical measurement error in

occupations, this paper considers how nonclassical measurement error due to record linkage affects

estimates of intergenerational mobility, primarily among the White population.10 Consequently,

direct comparisons of estimates of the rank-rank slope between those in Ward (2023) and in this

paper are difficult.

This paper also relates to the much larger theoretical and empirical literature on the measure-

ment and causes of intergenerational mobility (Lee and Solon, 2009; Chetty et al., 2014b, 2020;

Ray and Genicot, 2023; Jácome et al., 2021). The estimates in this paper provide historical con-

text for modern levels of intergenerational mobility and debates about the factors contributing to

upward mobility. In particular, the U-shape pattern of estimates found in this paper is consistent

10My proposed methodology can be extended to include measurement error in the regressor, though I do not do
so in this paper. There is undoubtedly some error in the occupations in historical census data. However, the
quantity and source of the error is debatable and an important open question for US economic historians.
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with falling rank-rank slopes reported in Jácome et al. (2021) for cohorts born between 1910 and

1970.

Beyond work concerning intergenerational mobility, this paper contributes to the large and var-

ied literature on record linkage. My proposed methodology is applicable to the large and rapidly

growing literature on historical census record linkage.11 More broadly, the measurement-error

approach to estimation with imperfectly linked data is complimentary to approaches that rely

on generative models of record linkage (Han and Lahiri, 2019), or attempt estimation without

explicitly linking records (Olivetti and Paserman, 2015; Balabdaoui et al., 2021; Pananjady and

Samworth, 2022; D’Haultfœuille et al., 2023; Santavirta and Stuhler, 2024). Last, the misclas-

sification models discussed in this paper may be useful in any setting with a repeated measure,

regardless of how the linked data are generated, so long as the identifying assumptions are satisfied

(Betancourt et al., 2022).

2 Models of Misclassification and Mobility

Researchers often hope to study the relationship between two variables—such as the economic

status of parents and children in adulthood—which are observed in separate sources. If records

are linked imperfectly across sources, then the data observed by the researcher reflect two data

generating processes: the joint distribution of the unobserved, true values of the variables and

the distribution of the observed, mismeasured data given the latent truth due to imperfections

in record linkage. I refer to the former component of the problem as the “economic” part of the

model and the latter as the “misclassification” component. In this section, I present a menu of

models for each component of the problem. I start with the most flexible approach, building on

the identification result in Hu (2008). For each model, I allow for fully flexible dependence on a

vector of controls, which may include information used in the linking process. I then introduce

additional structure to the problem which takes advantage of contextual knowledge about the

economic question of interest and the particular structure of errors due to imperfectly linked

data. Last, I discuss a maximum likelihood approach to estimation and inference.12

2.1 Nonparametric models of misclassification

The researcher observes N independent and identically distributed draws of four discrete vari-

ables: a regressor X, two noisy measures Y1 and Y2 of a latent outcome Y ∗, and linkage controls

11For recent reviews of work using linked historical census data in economic history and social science more broadly,
see Ruggles et al. (2018); Bailey et al. (2020a); Abramitzky et al. (2021a).

12I discuss details about the implementation in Appendix D.

6



W .13 The number of unique values taken by the regressor and the observed and unobserved out-

come variables is assumed to be the same and is denoted J .14 In the context of intergenerational

mobility, X is the father’s occupation and Y1 and Y2 are two measures of a son’s occupation.

While Y1 and Y2 are interchangeable in the nonparametric model, I will refer to Y1 as the primary

outcome and Y2 as the instrument or repeated measure. The roles of Y1 and Y2 are differentiated

in the parametric models of misclassification below.

Without imposing some restrictions on measurement error, almost any distribution of the data

X,Y ∗ can be rationalized (Molinari, 2008). Below, I discuss a set of assumptions sufficient

for point identification of the economic and misclassification components of the model. Point

identification for a broader class of misclassification models was established in Hu (2008), and I

connect the assumptions and notation in this paper to those in Hu (2008) in appendix section C.

First, I assume that the regressor X and the noisy measures Y1, Y2 are mutually independent

conditional on the latent truth Y ∗.

Assumption 1 The data are mutually independent conditional on the latent outcome:

X ⊥ Y1 ⊥ Y2 | Y ∗,W

Note that the scalar analogue of assumption 1 is weaker than that of classical measurement error,

since Y1 and Y2 may still depend on Y ∗ arbitrarily so long as they are mutually independent.

When measuring intergenerational mobility with linked census data, assumption 1 implies that,

given knowledge of the son’s actual occupation in adulthood, we would not be able to better

predict the son’s occupation observed in one census if given knowledge of the father’s occupation

or the son’s occupation in another census.

There are a few important threats to this assumption when using linked data. First, this

assumption may be violated if information about the regressor and the outcomes are used in

constructing the sample. If, for example, a researcher or genealogist discriminated between

candidate links based on the observed occupations in two census years or based on the occupations

of sons and fathers in adulthood, this may introduce dependence in Y1, Y2, and X even after

conditioning on the truth. While it is standard practice to exclude such information when linking

13I refer to X as the regressor and Y ∗ as the outcome as the primary object of interest in this application is a
regression coefficient for Y ∗ onX. The roles of the outcome, instrument, and regressor are mostly interchangeable,
though, and can be considered arbitrary discrete variables. The choice of the term “linkage controls” for the
variable W reflects that information in W is assumed to be related to the linkage process, such as place of birth,
age, race, and name commonness for individuals. The primary role of W is to allow flexibility in the relationship
among the other variables in the model, as it does in Assumption 1.

14Identification in the model does not require the regressor X to have support on the same number of values as
the latent outcome Y ∗ Hu (2023). However, for consistency with the original result in Hu (2008) and because
the number of unique values is the same for X and Y ∗ in my main application, I assume that X and Y ∗ share
a common number of dimensions.
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across censuses in most academic work, it is important to keep this assumption in mind while

interpreting results that rely on relatively less well understood approaches to record linkage, such

as genealogical links.

Assumption 1 may also be violated if it is more likely than random for mistaken links to find

the same individual. This concern is more serious if the typical underlying cause of record linkage

errors is permanent changes like permanent name changes, deaths, or emigration. Alternatively,

violations of this assumption are less likely if errors in record linkage are due to idiosyncratic

features like choices of the census interviewer or errors in the digitization of the archival records.

For example, Ghosh et al. (2024) show that the quality of handwriting in the original archival

data causally affects the rate of record linkage in standard samples.

Last, Assumption 1 requires that the propensity of linkage outcomes—i.e. whether an indi-

vidual is correctly or mistakenly linked—be conditionally unassociated with X and Y ∗. For

example, if black Americans or recent immigrants are more likely than white natives to be in-

correctly linked, then errors in the observed occupation in one census year would predict errors

in another. This concern highlights the importance of conditioning on information, like place of

birth and race, that is likely to predict linkage outcomes.

Under Assumption 1, the conditional distribution of X,Y1, Y2 given W is:

Pr(X,Y1, Y2|W ) =
∑
y∗≤J

Pr(Y1|Y ∗ = y∗,W )Pr(Y2|Y ∗ = y∗,W )Pr(Y ∗ = y∗, X|W ) (1)

In the context of measuring intergenerational mobility, the summand in this expression is the

product of the probability of an occupational transition from father to son Pr(Y ∗ = y∗, X|W )

and the misclassification probability of the son’s occupation in each observation in adulthood

Pr(Y1|Y ∗ = y∗,W ) and Pr(Y2|Y ∗ = y∗,W ). The probability of observing a particular combina-

tion of occupations for a father-son pair, then, sums this probability over the possible values of

the son’s latent, actual occupation.

It will be useful to introduce some notation. For simplicity, I will omit the control variable W

from all notation below with the understanding that all probabilities implicitly condition on W .

Let πi,j := Pr(Y ∗ = i,X = j), and let the matrix Π collect the full joint distribution of X and

Y ∗:

Π :=


π1,1 · · · π1,J
...

. . .
...

πJ,1 · · · πJ,J


When X and Y ∗ are the occupations of fathers and sons, the matrix Π encodes the probability

of all transitions from father’s occupation to son’s occupation.

Similarly, let the probability of conditional probability of observing Y1 = j and Y2 = k given
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the latent outcome Y ∗ = i is denoted δ1,j,i := Pr(Y1 = j|Y ∗ = i) and δ2,k,i := Pr(Y2 = k|Y ∗ = i).

The probability of any misclassification is summarized in the matrices ∆(1) and ∆(2) where

∆(1) :=


δ1,1,1 · · · δ1,1,J
...

. . .
...

δ1,J,1 · · · δ1,J,J

 ∆(2) :=


δ2,1,1 · · · δ2,1,J
...

. . .
...

δ2,J,1 · · · δ2,J,J


Let θ collect all the elements of ∆ and Π. Last, let n be a tabulation of the data, where

nq,r,s :=
∑

i≤N 1{xi = q, y1,i = r, y2,i = s}.15

I restrict attention to cases in which the distribution of the regressor varies for each value of

the outcome Y ∗.

Assumption 2 There are no two values of the outcome Y ∗ for which the distribution of X

conditional on Y ∗ is identical: Πi,· ̸∝ Πj,· for all i ̸= j.

In the context of intergenerational mobility, Assumption 2 states that there are no two occupa-

tions (among sons) whose fathers share the same distribution of occupations. This assumption

is satisfied, for example, if in pairwise comparisons, sons and fathers are more likely to have the

same occupation.

I also restrict attention to cases in which misclassification is not extremely severe:

Assumption 3 For any value of the latent outcome, correct classification is the more common

than not: δ1,i,i > 1/2, δ2,i,i > 1/2,
∑

j ̸=i δ1,i,j < 1/2,
∑

j ̸=i δ1,j,i < 1/2,
∑

j ̸=i δ2,i,j < 1/2,∑
j ̸=i δ2,j,i < 1/2.

In linear algebra, this condition is known as diagonal dominance in rows and columns. While

false-positive error rates in linked historical data are often high, most cases are thought to have

false-positive rates far below 50% (Bailey et al., 2020a).

Likelihood The probability of a particular realization of the triple (X,Y1, Y 2) = (i, j, k) is,

following equation (1):

Pr(X = i, Y1 = k, Y2 = l) =
∑
j≤J

δ1,k,jδ2,l,jπj,i

Since draws are i.i.d., the likelihood of the data n is a mixture of multinomials summing over the

15For simplicity of the likelihood expression, the index of n is increasing first in the values of X, then Y1, and last
Y2: n := (n1,1,1, n2,1,1, ..., nJ,1,1, n1,2,1, ..., n1,J,1, n1,1,2, ..., nJ,J,J).
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latent outcome Y ∗:

Pr(n|N, θ) = c(n)
∏

i,k,l≤J

∑
j≤J

πj,iδ1,k,jδ2,l,j

ni,k,l

where the normalizing constant c(n) := N !∏
i,k,l≤J ni,k,l!

does not depend on the parameters θ. The

log likelihood is:

ℓ(n|N, θ)− log c(n) =
∑

i,k,l≤J

ni,k,l log
∑
j≤J

δ1,k,jδ2,l,jπj,i = n · log(vec(Π⊤∆(1)∆(2))) (2)

where vec(M) flattens the matrix M column-wise and ∆(2) is a J × J2 matrix with the rows of

∆(2) stretched across the diagonals.

As a special case of Hu (2008), Assumptions 1, 2, and 3 together imply that the nonparametric

joint distribution Π and the misclassification matrices ∆(1) and ∆(2) are point identified. I

discuss the connection between Hu (2008) and these assumptions in appendix section C. As the

parametric models below are nested by the nonparametric model, they are also point identified.

2.2 Parametric models of ∆ and Π

The flexibility of the nonparametric model comes at the cost of high-dimensionality, as the num-

ber of free parameters in Π, ∆(1), and ∆(2) is quadratic in the number of unique values taken by

Y ∗, J . Estimation and inference with the nonparametric model becomes infeasible when the di-

mension of the data is large, as it would be for richer definitions of occupation or when estimating

rates of migration between counties.16 Consequently, studying richer outcomes will require im-

posing additional restrictions on patterns of misclassification or the underlying economic model.

Fortunately, misclassification from imperfect record linkage has a clear and simple pattern when-

ever the record linkage errors are not strongly associated with the variables of interest. Below, I

list parametric alternatives to the nonparametric approach above.

Record linkage measurement error Errors in variables due to imperfect record linkage have

a particular structure when record linkage errors are not strongly associated with the variables

of interest. When one record is incorrectly linked to another, we can think of the characteristics

as a random draw from the distribution of entities with similar linkage information.

To make this intuition more concrete, suppose that misclassification process for Y ∗ is as follows:

16Concretely, the number of free parameters in the nonparametric model is 3J2 − 2J − 1. For context, this means
that measuring occupational transitions with all “occ1950” categories in IPUMS would require estimating over
200,000 free parameters, and measuring county-level migration would require estimating over 20 million free
parameters.
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for Y ∗ = y, the probability of a successful link is 1−α(y), in which case Y = Y ∗; with probability

α(y) the link is a failure and Y is drawn independently from the distribution of Y ∗ in the

population.17 This form of misclassification error results in the following conditional distribution

for the observed outcome Y on the latent truth Y ∗:

Pr(Yj = y′|Y ∗
j = y) =

(1− α) + αPr(Y ∗ = y) for y′ = y

αPr(Y ∗ = y′) for y′ ̸= y
(3)

Stacking the conditional probabilities across the values of Y ∗, we can express the misclassification

distribution as the sum of two terms: a diagonal matrix weighted by (1−α) corresponding to the

successfully linked observations, and a matrix with each column equal to the marginal distribution

of Y ∗:

∆RL := (1− α)IJ + α


Pr(Y ∗ = y1) · · · Pr(Y ∗ = yJ)

...
...

Pr(Y ∗ = y1) · · · Pr(Y ∗ = yJ)

 (4)

where IJ is a J × J identity matrix and the matrix in the second term has constant columns.

Equation (4) suggests a few different approaches to modeling ∆(1) and ∆(2) in practice. First,

we can allow the rate of record linkage error and the marginal distribution of Y ∗ to be flexible:

∆RL
1 := diag(1−α) +αρ⊤ (5)

where α = (α1, ..., αJ)
⊤ reflects different rates of record linkage for latent values of Y ∗ and

ρ = (ρ1, ..., ρJ)
⊤. Equation (5) provides a relatively flexible model of misclassification due to

record linkage error. In some cases, such as when using full censuses, we may take the marginal

distribution of Y ∗ as known.18 In these cases, we may assert that ρ = ρ∗ and hold it fixed when

estimating the misclassification matrices:

∆RL
2 := diag(1−α) +αρ∗⊤ (6)

Last, if we assume the rate of record linkage error is independent of Y ∗, we arrive at a model of

misclassification with just one free variable:

∆RL
3 := (1− α)IJ + α1jρ

∗⊤ (7)

I compare the pattern of misclassification errors in equation (7) to the observed distribution of

17This pattern of errors can be generated by a model of record linkage in which rates of record linkage error are
independent conditional on Y ∗.

18More specifically, we may assume to know the marginal distribution of Y ∗ within the linked sample. Selection
into the linked sample could shift the distribution of Y ∗ from what is observed in a sample cross-section.
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errors in a naturalistic exercise in appendix section A.2. Without imposing the independence of

record linkage errors and outcomes, I find that equation (7) closely approximates the observed

misclassification distribution in an exercise where record linkage errors are the only source of

misclassification, as shown in figure A.1.

Mixed models of measurement error Contextual knowledge may suggest that the first and

second measure of the outcome have a different misclassification structure. In these cases, we

can choose different models for ∆(1) and ∆(2). For example, suppose that we hope to measure

migration across locations l between two periods 0 and 1. Location in the “origin” period l0

is observed without error, and the location in the “destination” period l1 differs only from the

true location l∗1 only due to imperfect record linkage. To overcome error from imperfect record

linkage, we can follow individuals to their location at another point in time, l2. Differences be-

tween l2 and the latent location l∗1 reflect both record linkage errors (i.e. the difference between

l2 and l∗2) and mobility between the two periods (i.e. the difference between l∗1 and l∗2). Assuming

that record linkage errors are independent across periods, it makes sense in this context to use a

record-linkage model for misclassification in l1 and a more flexible model for l2. In the context of

estimating intergenerational mobility, occupations change over time, and we may choose a model

of misclassification assuming record linkage is the primary form of misclassification, such as ∆RL
3

in equation (7) for ∆(1), and a flexible model for misclassification in the second observation of

occupation, ∆(2).

Stacked models of measurement error Additional variables may be useful for estimating

misclassification error. For example, if the location of residence for an individual is not used in

the record linkage process, it can be used to improve estimates of misclassification error due to

imperfect record linkage. In these cases, we can “stack” repeated tabulations of the underlying

data with alternative definitions of the outcome and regressor and estimate a (partially) shared

model of misclassification.

Parametric models of Π The most flexible model considered in this paper puts zero restrictions

on the joint distribution of X and Y ∗. While flexibility in this relationship allows for fully data-

driven analysis of the relationship between X and Y ∗, there may be natural economic or other

contextual restrictions on this relationship. Imposing parametric models for the joint distribution

of X and Y ∗ can lead to more efficient estimation by ruling out irrelevant portions of the pa-

rameter space of Π. Alternatively, we are often interested in functions of Π or model parameters

that may generate joint distributions of X and Y ∗ rather than Π itself. The misclassification

component of the model can be viewed as a “wrapper” to address errors due to imperfect record

linkage while directly estimating parametric models of interest. For example, we can explicitly
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model the relationship between child and parents occupational status, as in Becker and Tomes

(1979).

2.3 Estimation and Inference

I estimate the distribution of the economic data Π and the misclassification matrices ∆(1) and ∆(2)

via maximum likelihood. Because all of the variables are discrete in this setting, the likelihood

is a simple function of the tabulation of the data, as shown in equation (2).

While ∆(1), ∆(2), and especially Π may be of interest to researchers on their own, the target is

often a functional β(·) of the joint distribution of X and Y ∗. For example, the rank-rank slope of

occupations for fathers and sons is a function of Π where X is the father’s occupation, Y ∗ is the

latent true occupation of the son in adulthood, and the β(·) corresponds to the linear regression

coefficient of the ranks of occupations for sons regressed on the ranks of occupations for fathers.

Building on this observation, I use a simple plug-in estimator, which depends on an estimate

for the joint distribution Π̂ and two vectors corresponding to the scalar values associated with

each category for X and Y ∗. As a slight abuse of terminology, I will sometimes refer to plug-in

estimates β(Π̂) as maximum likelihood estimates of β.

I estimate the variance of the parameters in the model by the inverse Fisher information. To

obtain confidence intervals for β(Π̂), I use the delta method.19

3 Validation

To assess the performance of an estimator on imperfectly linked data, we would ideally like to

compare estimates to those that we would get using perfectly linked data. The closest available

data to such a ground truth in the context of historical censuses are the high-quality linked

samples made available to the public by the LIFE-M project (Bailey et al., 2020b) and the

Census Tree (Price et al., 2021). While these samples are believed to have much lower false

positive rates than standard approaches, neither sample is perfectly representative of the full

population, and the absence of a linked pair in either data set does not imply that the link is

a false-positive20 Consequently, it would be unclear if differences between OLS estimates using

19In practice, I often find that the Fisher information is singular to numerical precision. The MLE appears
to be stable across multiple starting values for the optimization algorithm, suggesting that the source of the
singularity is a failure of point identification. Instead, the issue is likely because parameters in the nonparametric
model of Π are close to the boundary—i.e. zero. In these cases, I use the Moore-Penrose pseudoinverse of the
Fisher information to estimate the variance of Π and downstream parameters. One more reliable alternative for
constructing confidence sets for parameter estimates would be the Monte-Carlo confidence algorithms discussed
in Chen et al. (2018). The misclassifyr package allows for constructing such confidence sets, though this
approach to inference is more computationally demanding.

20The LIFE-M sample successfully links about one half of records, and the genealogical links in the Census Tree
sample represent less than 20% of the full census.
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LIFE-M or the Census Tree and estimates from the proposed methodology on standard linked

data from equivalently defined populations would be due to bias in the proposed estimator or

selection bias in either linked sample. For this reason, I use a synthetic ground truth for the

validation exercise, in which sample selection is held constant and the rate of data corruption

from false positive links is known. Specifically, I use common algorithms to construct linked

samples across synthetically corrupted copies of the 1940 census. I estimate returns to schooling

with a simple linear Mincer regression (8) in each linked sample via OLS and maximum likelihood

estimates for models of misclassification.

Y ∗
i︸︷︷︸

wage income

= γ + β Xi︸︷︷︸
years of education

+ϵi (8)

I then compare OLS and MLE estimates with the OLS estimates that would be obtained on

the correctly linked subset of the data. By conditioning on the linked sample, I shut down the

possibility of selection bias in the exercise.

I generate corrupted copies of the 1940 census as follows. I start with all men age 30 to 49 in

the full count 1940 census with observed years of educational attainment and wage income. From

this population, I independently draw three samples: a 20% sample which I denote as A and two

50% samples, B1 and B2. Missing observations in B1 and B2 reflect unrecoverable mutations

in the linkage information—such as changes in variables used to “block” candidate links, like

the recorded place of birth, or swapping of middle and first names after childhood—as well as

emigration and death. The scale of these changes reflects the difficulty of linking historical census

data. The LIFE-M project, for example, is unable to link about 50% of the initial sample despite

extensive effort and the use of additional information from auxiliary sources.

I then add naturalistic, independent synthetic noise to names and ages in each sample, cali-

brated to the degree of noise found in linked historical census data. Specifically, I add -1, 0, or

1 from each individual’s age with probability 0.1, 0.8, and 0.1 respectively. I then round ages

for 20% of each sample to the nearest age ending in five or zero to reflect age heaping. I swap

names for common “nicknames” observed in linked historical data, such as “Wm” for “William”

or “Jon” for “Jonathan”. Finally, I garble letters in last names, either deleting or swapping a

letter, and swap or add middle initials with probability 20%. Table E.1 compares distances in

names and ages in one draw of the validation exercise to those in the LIFE-M sample.

While the synthetic noise in the validation exercise is drawn independently, this does not imply

that linkage errors are independent in the B1 and B2 samples.21 The frequency of name, age, and

birth place in the population lead to a range of successful linkage rates which may be associated

21To illustrate the influence of increased dependence between the measurement error in Y1 and Y2, one could
introduce a non-zero correlation in the missingness of samples B1 and B2.
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with educational attainment and earnings. Indeed, I find that linkage errors are correlated in the

B1 and B2 samples.

After generating the corrupted samples, I link sample A to B1 and B2 using five linkage algo-

rithms: standard and conservative versions of the deterministic algorithm (ABE) in Abramitzky

et al. (2014); standard and conservative versions of the unsupervised approach in Abramitzky

et al. (2019) that estimates a Felligi-Sunter (FS) model of record linkage; and a “Representative”

approach which estimates FS probabilities and takes the best candidates without thresholding

on a minimum linking probability or a minimum difference between the linking probability of the

best and second-best candidates.

For each linked sample, I estimate β in the Mincer regression (8) via OLS and via maximum

likelihood for misclassification models. I report estimates for two models of misclassification:

a nonparametric model of the misclassification and a record linkage model of misclassification,

specifically ∆RL
1 defined in equation (5). I bin wage income into eight groups: zero wage income,

increments of $500 up to $3000, and between $3000 and the 1940 top-code of $5000. While

estimating models of misclassification, I condition on a coarsened definition of birthplace and

age rounded to the nearest ten years, for a total of 18 covariate cells. Note that the role of the

linking controls is not to project out variation in X, in the sense of Frisch-Waugh-Lovell theorem.

Instead, conditioning allows estimates of Π, ∆(1), and ∆(2) to vary across values of the linkage

controls. I take a weighted sum over estimates of Π across covariate cells to compute an estimate

of β for the full population.

The influence of record linkage error and the adjustment provided in the estimates of the

misclassification model are illustrated in Figure 1, which plots results from one draw of the

validation exercise. The bottom right matrix shows the difference in the empirical distribution

of wages and educational attainment in the full linked sample and its correctly linked subset.

Relative to the correctly linked subset of the sample, the observed distribution is missing mass

around the diagonal of the matrix with excess mass further off-diagonal. This bias reflects that the

distribution of wages does not depend strongly on educational attainment for incorrectly linked

pairs of observations. The top right matrix shows the difference between the maximum likelihood

estimate of the joint distribution of wages and educational attainment from the misclassification

model and the empirical distribution in the linked sample. This difference largely mirrors the bias

in the empirical distribution in the linked sample, as the MLE adds mass near the diagonal and

subtracts mass in the off diagonal, correcting for the bias from record linkage errors. The matrix

in the bottom left shows the remaining error in the MLE relative to the empirical distribution in

the correctly linked sample. While the MLE does not perfectly fit the actual joint distribution,

the clear pattern of bias in the on/off diagonal is no longer seen.

The performance of the maximum likelihood estimator for two models of misclassification is
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summarized in Table 1. The first row of the table shows the average proportion of links that were

correct across draws of the validation for the particular linkage algorithm used. The conditions

are ordered in terms of the difficulty of the inference problem, with higher false positive rates

in the sample when moving from left to right. The median bias in the maximum likelihood

estimates for each model of misclassification is reduced relative to OLS across all conditions. In

the first two columns, the false positive rate is quite low, at four or five percentage points. This

level of accuracy in the linked sample is likely a better approximation of links in higher quality

modern data. The bias in OLS estimates is correspondingly small, at about −$3 or −$4 per year

of education, relative to the OLS estimate in the full population of $91.40 per year of education.

The median bias of the MLE is about half the magnitude of the bias in OLS at about −$1 or −$2

per year of education for both the nonparametric and record linkage models of misclassification.

The third and fourth columns report results for linked samples that are a better approximation

of the challenges posed by imperfectly linked historical censuses, with false positive rates of 13pp

and 21pp respectively. The higher false positive rates lead to larger biases in OLS estimates, at

about 10% and 15% of the population OLS coefficient respectively. Bias in the MLE for both

models remains at about the same low level in Condition 3, now around 90% smaller than in

the OLS estimates. The median bias starts to increase in the MLE for the fully nonparametric

model, increasing in magnitude to −$5 per year of educational attainment. The last column

reports estimates in the most challenging inference environment, with false-positive rates of 44pp

on average. Condition 5 is a more challenging problem than in most settings with historically

linked data, though it may better reflect links with limited information or links among difficult

subpopulations. In this setting, OLS is severely biased, with attenuation of over 30%. Bias is

also larger in MLE estimates for both misclassification models, with attenuation of about 5%

and 13% in the record linkage and nonparametric models respectively. The false positive rate in

condition 5 is sufficiently high that Assumption 3 nearly fails. Correspondingly, it appears that

the MLE for models of misclassification, especially the most flexible models, begin to suffer. It

is notable, though, that the direction of the bias appears to be consistently in line with that in

OLS, and the magnitude of the bias remains a fraction of that in OLS.

4 Intergenerational Mobility 1850-1920

In this section, I present revised estimates of intergenerational mobility allowing for misclas-

sification in sons’ occupation due to record linkage errors. Maximum likelihood estimates of

misclassification suggest that sons’ occupations in adulthood are measured with substantial er-

ror, with the latent and observed occupation agreeing about 60% of the time, averaging across

years and occupations. Consequently, I find that OLS estimates are substantially attenuated

relative to maximum likelihood estimates, with levels of attenuation varying from approximately
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50% for cohorts born in the mid nineteenth century to approximately 30% among cohorts born

around the turn of the twentieth century.

4.1 Data sources and sample construction

The main analysis depends on three pieces of data: I use complete count census data to observe

occupations and construct father-son pairs; I use existing links between censuses to infer the

occupations of sons in adulthood; and I use census data along with supplementary sources to

assign rankings to occupations over time. To facilitate replicability, the main analysis depends

only on publicly available data and can be implemented with a new R package.

I use IPUMS complete count data for censuses between 1850 and 1940. I use three sources

of crosswalks for linked census data: the Census Linking Project Abramitzky et al. (2020), the

Census Tree (Price et al., 2021), and the IPUMS Multigenerational Longitudinal Panel project

Helgertz et al. (2023).22 For each census year between 1850 and 1910, I subset to father-son pairs

in which the son is below age 18. The misclassification model relies on repeated observations

of the outcome, so I restrict the sample to father-son pairs in which the son is linked into two

censuses as an adult. I consider only one group of three census years for each base year for ease

of interpretation. When possible, I use census years two and three decades after the base year for

the instrument and main outcome, when sons are 20-37 and 30-47 years old, respectively. The

base years 1860 and 1870 measure outcomes for sons at different ages due to the destruction of the

1890 census. I weight final samples to adjust for selection bias on observables in record linkage.

Specifically, I estimate propensity to be included in the linked sample via logistic regression with

LASSO penalization on father’s age, race, birth place, and occupation.

It is important to know which variables enter the linkage algorithm. Any information that is

predictive of misclassification error—and consequently record linkage errors—should be included

as a linkage control. Consequently, the methodology proposed in this paper may perform poorly

when variables that are used in the analysis are also used to construct the linked sample. There

is tension, then, between obtaining (presumably) higher quality links based on a richer set of

information and retaining enough observations within each covariate cell for estimation.

To reduce the dimension of the problem, I use the “mesooccupation” coding of occupations from

Song et al. (2019). This categorization is composed of nine groups: lower manual occupations,

such as operatives and laborers; service workers, such as janitors and deliverymen; farmers,

fisherman, and other primary occupations; craft occupations, such as blacksmiths, bricklayers,

and bakers; sales occupations, such as insurance and real estate agents; clerical occupations,

22Complete count US census data may be downloaded at https://usa.ipums.org/usa/. Crosswalks for linked
census data may be downloaded at https://censuslinkingproject.org/ for the Census Linking Project, https:
//www.censustree.org/ for the Census Tree, and https://usa.ipums.org/usa/mlp/mlp.shtml for the IPUMS
Multigenerational Linked Panel.
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such as postal clerks and bookkeepers; managers and officials; other professions, such as school

teachers and religious workers; and classical professions, such as doctors, lawyers, engineers, and

professors.23

The primary estimand is the rank-rank slope of father and son’s occupations. For any estimate

of the joint distribution of father’s and son’s occupations and for each ranking of occupations,

we can compute a corresponding rank-rank slope of status. I rank occupations using estimates of

earnings and human capital based on census data and other sources, summarized in Table B.1.

One important decision in constructing occupational status rankings is whether you allow the

ranking to depend on covariates like race, region, and birth year. In reality, the average earnings

or educational attainment may vary considerably across places, between groups, or through time

and we may wish for measures of occupational status to reflect this variation (Saavedra and

Twinam, 2020; Song et al., 2019). Allowing measures of occupational status to depend on race,

for example, substantially increases the rank-rank slope in father-son occupational status due to

the large racial gap in outcomes between the White and Black populations in the United States

(Ward, 2023), as can be seen in Figure B.1. In my view, the choice of occupational ranking is a

choice in estimand rather than different approaches to estimating a common target. Interpreting

any rank-rank slope as the “true” association would require writing down a model that relates

the observed data to the preferred estimand or bluntly asserting that the occupational ranking

is correct.

The most notable source of missing coverage in the US Census is the exclusion of slaves, who

were recorded in separate schedules in 1850 and 1860.24 Consequently, linked census data based

on the 1850 and 1860 censuses miss the vast majority of the non-White individuals and levels

of intergenerational mobility in these samples will be higher than it is in the full population.

Following Ward (2023), I impute father-son pairs among slaves in the 1850 and 1860 censuses

under the assumption that almost all Black individuals born in the US in the antebellum period

would be the children of slaves and that outcomes like the average income, the average years of

schooling, or the proportion literate among slaves is zero. Additionally, to approximate a sample

in which sons are observed twice in adulthood, I use links between Black adults in the 1870 and

1880 censuses and 1880 and 1900 censuses who were age 0-17 in 1850 and 1860 respectively. These

assumptions ignore the (relatively small) free black population in the US before the Civil War and

any variation in status among the enslaved, which certainly was non-zero (Fogel and Engerman,

1974).25 The scale of errors due to these assumptions, though, may be small relative to linking

23The original categorization in Song et al. (2019) includes a separate category for members of armed forces.
Because this is a relatively small and inconsistently sized occupational group over time, I subsume members
of armed forces into the managers and officials category, which matches most closely on median educational
attainment and total income.

24The digitized Slave schedules are available here: https://usa.ipums.org/usa/slavepums/documentation/about.html.
25There were large differences, for example, in the experience of slaves coerced into plantation labor and those in
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the full free black population in the 1850 and 1860 censuses. For consistency in the population

across years, I report estimates either based on the White population or the full population in

the census with the addition of imputed Freedmen. I include the imputed slave populations for

all measures of occupation rank.

4.2 Occupation Misclassification

While we are primarily interested in the joint distribution of the correctly measured data, the

approach proposed in this paper produces estimates of the misclassification error as a bi-product.

In the context of estimating intergenerational mobility, this means that we will estimate the

probability that a farmer is misclassified as a doctor in addition to the probability the son of a

farmer becomes a doctor.

Figure 2 reports maximum likelihood estimates for a nonparametric model of misclassification

in occupations in the 1910-1940 linkage. The figure appears to show the record linkage pattern

of misclassification error, as discussed in section 2.2, with a heavy mass on the diagonal and

off-diagonal mass roughly proportional to the marginal density of sons’ occupations. Because the

model is fully flexible, this pattern was not guaranteed. Values in the diagonal of the distribution

are consistent with false positive rates slightly over 30% in the linked census data, which is at

the high end of the range of false positive linkage rates found when evaluating linked historical

censuses against a ground truth (Bailey et al., 2020a).

At the same time, there are clear deviations from the record linkage pattern of misclassifi-

cation, likely reflecting occupational changes between the two census years in which the sons’

occupations were observed, 1930 and 1940. In particular, there appears to be a large degree of

mobility in the bottom of the matrix, in which the MLE suggests that 24% of individuals whose

latent occupation is as a service worker are observed in a lower manual occupation, and 16% of

individuals who are lower manual workers are observed in a craft occupation in 1940. Further up

the occupation distribution, 18% of sales workers in the MLE are observed in an managerial or

official occupation. This pattern of estimates reflects, in part, ambiguity in the definition of the

sons’ latent occupation.

While the nonparametric model of misclassification presented in section 2.1 is point identified

under Assumptions 1, 2, and 3, the interpretation of the latent outcome is somewhat ambiguous

when measured at two points in time. To make the make the mapping from the latent outcome

to the observed data more concrete, we can use a mixed model of misclassification error in which

the only source of misclassification in one of the two measures is assumed to be record linkage

error. Under this model, we can interpret the latent outcome as being tied to a point in time.

For example, when linking sons observed in childhood in 1910 to their outcomes in 1930 and

urban settings engaged in domestic service or craftwork.
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1940, we can choose 1940 to be the year we wish to measure associations with the sons’ latent

occupation by enforcing that the misclassification matrix ∆(1) reflects only measurement error

due to imperfect record linkage, while a nonparametric model for ∆(2) allows for misclassification

for record linkage errors along with other sources of change in the outcome.

The mixed model of record linkage also allows for direct estimates of share of incorrectly linked

observations. Figure 3 presents maximum likelihood estimates for α as defined in equation (7)

for mixed models of misclassification in which ∆(1) is assumed to have the form of ∆RL
3 and ∆(2)

is nonparametric. Maximum likelihood estimates of record linkage error are high for all census

years, with false positive error rates near 40% throughout and as high as 50% for cohorts observed

in childhood in the 1860 census. There does not appear to be a clear trend in the levels of record

linkage error over time, which may reflect partially offsetting trends as both the quality of the

underlying data improve and the composition of the linked sample shifts moving from earlier to

later censuses.26

Across the three linked samples in Figure 3, the conservative version of the deterministic

ABE algorithm in Abramitzky et al. (2014) has the lowest estimates of record linkage error, the

standard variant of the ABE algorithm typically has the highest estimates of the record linkage

error with estimates of false positive rates 5-10pp higher than the conservative samples, and the

full Census Tree has estimates of false positive rates that typically fall between estimates of the

other two samples. Consistent with this ordering of linked samples, OLS estimates of the rank-

rank slope on the standard ABE linked samples are the lowest, estimates for the conservative

ABE sample are consistently higher, and estimates in the full Census Tree sample are in between,

as shown in Figure E.2.

Estimates of the false positive linkage rate vary significantly across values of the linkage controls.

Figure E.1 plots maximum likelihood estimates of α within linkage control cells for the 1910-1940

linkage. Linkage error rates are substantially larger for the rural population than the urban

population, with the exception of the rural population in the West, and higher among the foreign

population than the native born.

The levels of the MLE for record linkage error are higher than prior estimates based on ground

truth samples (Bailey et al., 2020a). It is possible—though subjectively unlikely—that ground

truth samples themselves contain false positive errors. A fundamental challenge in historical

record linkage is that we cannot know with certainty that a set of linked observations are correct,

we can only assemble larger constellations of evidence in support of particular views of the world.

Alternatively, it is possible that the subset of standard linked data that are not found in ground

26For example, the share of immigrants in the linked sample is substantially higher among the cohorts observed
in childhood in 1900 and 1910 relative to those in 1850 and 1860. Estimates of linkage rates in the 1870 census
appear to outliers relative to the other linked samples; this may be because it is the only initial census year in
which the instrument is observed after (in 1910) the main outcome (in 1900). I am unable to keep the relative
timing of the earlier and later years constant because the 1890 census is missing due to a fire in 1921.
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truth linked samples have higher rates of linkage error than the overlapping samples. Last, other

forms of measurement error may lead to inflated estimates of record linkage error. Errors in

the recorded occupation—whether due to errors in the initial interview, the digitization of the

archival text, or the IPUMS coding of raw occupation strings—could lead to higher estimates

of α, especially if the distribution of misclassification errors is similar to the pattern generated

by record linkage errors. There is some evidence in favor of the latter interpretation provided in

Ward (2023), which found high rates of error in recorded occupations in two enumerations of St.

Louis in 1880.

4.3 Intergenerational mobility

Figure 4 illustrates how estimates of the apparent relationship between father’s and son’s occu-

pations change after correcting for misclassification from imperfect record linkage. The matrix on

the left plots the maximum likelihood estimate of the conditional distribution of son’s occupation

in 1940 on father’s occupation in 1910 (equal to Π̂ normalized to have columns sum to one) from

a mixed model of misclassification in which measurement error in 1940 is assumed to have a

record linkage structure, ∆RL
3 , and measurement error in the 1930 occupation is fully flexible.

The matrix on the right plots the difference between the MLE and the empirical conditional

distribution in the linked sample. As in the validation exercise, the MLE shifts mass away from

far off-diagonal, where sons have the largest change from their father’s status, and towards the

diagonal, where similar occupations are shared across generations.

The maximum likelihood estimate increases the share of sons in the same occupation (or oc-

cupation group) as their father by seven, five, and six percentage points among the sons of lower

manual workers, farmers, and classic professionals respectively—representing a 21%, 13%, and

27% increase over the observed shares. Consequently, estimates of the direct transmission of

occupation are relatively high, with over a quarter of the sons of professionals (e.g., lawyers and

doctors) becoming professionals, nearly a third of the sons of craftsmen becoming craftsmen,

and over two-fifths of the sons of farmers staying in farming. Similarly, large jumps in upward

or downward mobility are less common in the MLE. The share of sons of lower manual workers

becoming managers and officials is 2 percentage points or 20% lower than observed, and the share

of sons of professionals entering lower manual work 3 percentage points or 38% less.

Estimates of the joint distribution of occupations provide a detailed description of intergenera-

tional mobility, but the primary estimand is the rank-rank slope of occupation status for fathers

and sons. Specifically, I estimate β in the linear regression:

y∗i︸︷︷︸
Rank of son’s occupation Y ∗

= γ + β xi︸︷︷︸
Rank of father’s occupation X

+ϵi (9)
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where y∗ is the population rank of the son’s (latent) occupation Y ∗, and x is the population rank

of the father’s occupation. I estimate β in equation (9) via OLS and via plug-in for the MLE of

the joint distribution of fathers’ and sons’ occupations, Π̂.

Figure 5 plots OLS and MLE estimates of the rank-rank slope of occupation status, defined by

the average educational attainment in the 1940 and 1950 censuses, for cohorts of White men born

between 1832 and 1910. The level and trend of OLS estimates is consistent with prior work in

the literature (Ferrie, 2005; Song et al., 2019). OLS estimates of the rank-rank slope are around

0.16 for cohorts observed in childhood in 1850 and 1860 censuses and rise to 0.3 for cohorts born

between 1892 and 1910. The proportional change is striking, with levels of the rank-rank slope

nearly doubling across the period. These estimates paint a picture of an exceptionally mobile

economy in the mid nineteenth century US, with mobility gradually declining to levels similar to

those observed in the US in modern data.

Estimates correcting for misclassification due to imperfect record linkage reveal a different

story. Levels of rank-rank slope are substantially higher across the full period, with OLS estimates

attenuated by about one third at the end of the period and about one half in the earliest censuses.

The difference in the rank-rank slope between OLS and MLE estimates is roughly constant across

the full period, while the relative bias declines considerably. While estimates of the rank-rank

slope increase substantially over the second half of the nineteenth century, levels in the earliest

censuses are not exceptionally mobile relative to modern economies. Instead, levels of mobility

among cohorts born between the Civil War and World War One appear to have experienced

low levels of mobility in the distribution of modern economy, and lower than in earlier and later

periods of American History. Estimates of the rank-rank correlation for cohorts born in the 1970s

are around 0.3, suggesting an inverse-U shape pattern in levels of intergenerational mobility in

the US between the mid nineteenth century and the late twentieth.

The rank-rank slope of occupation status varies with the choice of misclassification model,

though the qualitative conclusions do not. Figure E.3 plots the estimates of the rank-rank

slope for OLS and MLE for four models of misclassification: a fully nonparametric model of

misclassification, a flexible record linkage structure ∆RL
1 , a model of record linkage error with

known marginal distributions of the outcome ∆RL
2 , and a mixed model of misclassification in

which ∆(1) is assumed to have the record linkage structure ∆RL
3 and ∆(2) is fully flexible. There

do not appear to be a clear patterns in the order of estimates across misclassification models.

There is proportionately less variation in maximum likelihood estimates of the rank-rank slope

across linked samples relative to OLS, as shown in Figure E.4. Accounting for variation in the

false positive rate across linked samples, the MLE reduces the range of estimates relative average

estimate, from about 20% on average across years for OLS to about 13% for MLE. The difference

between OLS and MLE estimates is similar across cohorts when occupations are ranked by the

average total income of workers holding that occupation in the 1940 and 1950 censuses, rather
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than average educational attainment.

5 Conclusion

This paper introduces a methodology for estimation using imperfectly linked data and applies

it to provides new estimates of intergenerational mobility for cohorts born between 1832 and

1910. Building on the identification result in Hu (2008), I show how independent repeated

measures of linked data can be used to estimate parameters even when imperfections in record

linkage lead to highly nonclassical errors in observed variables. The methodology developed in

this paper is not limited to the measurement of intergenerational mobility. And while the most

direct applications include other topics that rely on linked historical censuses such as immigrant

assimilation (Abramitzky et al., 2021b) or the causes of racial gaps (Althoff and Reichardt, 2024),

this approach may also be useful in modern applications with (much) less than perfect links. As

linked data across nonstandard sources become more common in economics—for example, linking

Linkedin resumes to Github profiles (Gortmaker, 2024) or venture capital funding to technologies

(Narain, 2024)—it will be important to consider the potential for biases due to imperfections in

record linkage.

Revised estimates of intergenerational mobility suggest a different trajectory of mobility over

the last 200 years. The rank-rank association for individuals born between 1830 and the Civil War

is comparable to modern levels, rather than the exceptionally low levels reported in prior work

Long and Ferrie (2013); Song et al. (2019). The association between fathers’ and sons’ occupation

rank increases among cohorts born from the Civil War to the First World War, reaching levels

just outside the range of mobility experienced in commuting zones in the US today (Chetty et al.,

2014a).

While the levels of the rank-rank association found here for the cohorts born before the Civil

War are comparable to the modern US, this does not necessarily imply that levels of mobility—for

White men—were not exceptional. It is arguably more meaningful to compare levels of mobility

to contemporary economies in Europe and the New World (Long and Ferrie, 2013; Pérez, 2019).

It is not clear ex ante whether we should expect errors in record linkage in historical census data

to be more or less common in the United States compared to Britain, Norway, or Argentina.

Consequently, it may still be that the Americas provided high rates of intergenerational mobility

for White men in the mid nineteenth century relative to Europe.

Additionally, the inverse-U shape pattern in the rank-rank association found in this paper re-

flects trends in relative mobility, rather than absolute mobility. The United States experienced

phenomenal rates of growth over the last 200 years, with average incomes doubling five times

between the birth of the earliest cohorts in this analysis and today (Wright, 2024). The quality
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and length of life improved alongside earnings (Gordon, 2016). Reconciling the low levels of

relative intergenerational mobility during the turn of the twentieth century found here with the

high levels of contemporary growth is a promising area for future work. Measuring upward mo-

bility with confidence across US history would require information about earnings of occupations

across time and place—potentially drawing from many disparate sources—which could then be

combined with estimates of the transmission of occupation between fathers and sons presented

here.
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Tables and Figures

Table 1: Validation results for the misclassification maximum likelihood estimator.

This table presents results from 100 draws of the validation exercise described in section 3. The
columns of the table correspond to different linkage algorithms and rows report values of statistics
for either the naive OLS estimator or the maximum likelihood estimator for the nonparametric
misclassification model or the record linkage misclassification model ∆RL

1 . Condition 1 and Con-
dition 2 are the conservative and standard versions of the thresholding rules used in Abramitzky
et al. (2019) based on estimates of the probability of correct linkages in the Felligi-Sunter model;
Condition 3 and Condition 4 correspond to the conservative and standard versions of the deter-
ministic algorithm proposed in Abramitzky et al. (2014); and Condition 5 selects the candidate
link with the highest estimated Felligi-Sunter probability without thresholding. The first row
gives the average proportion of the linked sample for each condition that is correct. The next
three rows report the median bias across draws for the OLS and MLE estimates. The last three
rows report the standard deviation of the estimate for each estimator across validation draws.
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Figure 1: Bias in the distribution of education and income for naive and MLE estimates.
This figure compares estimates of the distribution of wage income and years of educational
attainment to the truth in one draw from the validation exercise, as described in Section 3. The
“Naive” estimate is the sample mean in each cell of the joint distribution in the observed linked
sample. “MLE” estimates are maximum likelihood estimates assuming an independent Record-
Linkage structure for misclassification, specifically model ∆RL

2 defined in equation (6). The top
left matrix plots maximum likelihood estimates of the joint distribution of education and wages.
The top right matrix reports the difference between the maximum likelihood estimates and the
means in the linked sample. The bottom matrices report the error in estimates for the joint
distribution relative to the empirical distribution in the correctly linked subset of the data.
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Figure 2: Nonparametric maximum likelihood estimates of the misclassification matrix, 1940.
This figure reports maximum likelihood estimates of the misclassification matrix for son’s oc-
cupations observed in the 1940 census based on a sample of linked census data 1910-1940 and
1910-1930. These estimates correspond to the nonparametric model of misclassification. Occu-
pations are grouped into nine categories based on the “mesooccupation” classification in Song
et al. (2019). The value and color of each entry correspond to the conditional probability in that
cell.
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Figure 3: Estimates of record linkage error, 1850-1910.
This figure shows maximum likelihood estimates of “record linkage error” in linked census data
between 1850 and 1910. This figure plots estimates of the record linkage error parameter, α,
defined in equation (7). For each set of linked censuses, I estimate a mixed model of misclas-
sification error in which the primary measurement is assumed to have a record linkage error
structure, ∆(1) = ∆RL

3 , and misclassification in the repeated measure is allowed to be flexible.
Estimates are reported for three linked samples: ABE conservative and ABE standard are from
the Census Linking Project (Abramitzky et al., 2020) and Census Tree is the full sample of links
from the Census Tree (Price et al., 2021).
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Figure 4: Estimated and observed conditional distribution of occupational status, 1910-1940.
This figure presents maximum likelihood estimates of the distribution of sons’ occupation condi-
tional on their fathers’ occupation in a model of misclassification and the difference between the
MLE and the “naive” distribution in the linked sample. Estimates of the conditional distribution
are from a nonparametric model of the joint distribution of father and son’s occupations and a
mixed model of misclassification: misclassification errors are assumed to have a record linkage
structure in 1940, ∆(1) = ∆RL

3 , and misclassification errors in 1930 are allowed to be flexible.
The value and color of each entry correspond to the conditional probability or the difference in
conditional probabilities in that cell. Linked data in this sample are from the standard variation
of the ABE algorithm using exact names (Abramitzky et al., 2020). Occupations are grouped
into nine categories based on the “mesooccupation” classification in Song et al. (2019).
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Figure 5: Intergenerational rank-rank slope of occupation status, 1850-1910.
This figure reports estimates of the intergenerational association of occupation rank among co-
horts born between 1833 and 1910. OLS estimates are shown in orange and maximum likelihood
estimates for a model of misclassification are shown in blue. Misclassification errors are assumed
to have a record linkage structure in the year of the main outcome, ∆(1) = ∆RL

3 , typically 30 years
after observed in childhood, and misclassification is allowed to be fully flexible in the repeated
measure. The vertical line through each estimate is a 95% confidence interval. Standard errors
for the maximum likelihood estimates are computed via delta method. The year corresponds
to the census year in which father-son pairs are defined. Samples include sons age 0-17 in the
base census year. To be included in the sample, sons must be observed over the age of twenty
in two census years. This sample was generated using linked data from the Census Linking
Project (Abramitzky et al., 2020). Occupations are grouped into nine categories based on the
“mesooccupation” classification in Song et al. (2019).
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Appendix A Illustration of Record Linkage Errors

A.1 Bias decomposition

Imperfections in record linkage may result in bias from contamination or nonrepresentativeness

in the linked sample. To illustrate the role of each source of bias more concretely, consider the

following simple bias decomposition. Suppose a researcher would like to regress an outcome y

observed in data set B on a covariate x observed in data set A. Let λ∗ be an indicator for the

true linkage between data sets, and let λ be the linkage used by the researcher. That is, λ∗
ab = 1

means that the observations a ∈ A and b ∈ B correspond to the same individual, and λ∗
ab = 0

means that the observations do not. Similarly, λab = 1 means that observations a ∈ A and b ∈ B

are linked by some record linkage procedure while λab = 0 means the observations are not linked.

For simplicity, suppose that x and y are mean zero, x has unit variance and the true and observed

linkages are independent of x and y. Then by the law of total probability, we can decompose the

bias of the naive estimate:

E[β̂]− β =E[xayb|λab = 1]− E[xayb|λ∗
ab = 1]

=E[1− λ∗
ab|λab = 1]︸ ︷︷ ︸

False Positive Rate

(E[xayb|λ∗
ab = 0, λab = 1]− E[xayb|λ∗

ab = 1, λab = 1])︸ ︷︷ ︸
Bias from Data Corruption

+

E[1− λab|λ∗
ab = 1]︸ ︷︷ ︸

False Negative Rate

(E[xayb|λ∗
ab = 1, λab = 1]− E[xayb|λ∗

ab = 1, λab = 0])︸ ︷︷ ︸
Bias from Nonrepresentativeness

(10)

The decomposition shows that the strength and direction of bias from imperfect record linkage

is determined by four terms. The scale of bias from nonrepresentativeness depends on the false

negative rate, and the direction depends on the difference in the covariance among actually linked

individuals between observations linked or missed in λ. Intuitively, individuals with less common

names, those who are illiterate or innumerate, and those who change names between censuses

are likely nonrepresentative of the full population. Bias from data corruption depends on the

covariance between xa and yb when observations a and b do not correspond to the same individual.

Often, it’s reasonable to assume that this term will be close to zero, or at least much closer to

zero than the covariance among correctly linked observations. In the context of intergenerational

mobility, this covariance depends on the strength of the association between linking information

(e.g. names, age, and birthplace) and occupation status. Intuitively, the scale of this bias depends

linearly on the fraction of false positives in the linkage λ. Consequently, OLS estimates of β in

an otherwise representative linked sample with a false positive rate of α will be attenuated to

zero, E[β̂] = (1− α)β.
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A.2 Illustration in the 1940 census

To illustrate errors due to record linkage in a more naturalistic setting, I generate a synthetic

linked data set with zero correct links in the exercise below. Similar to the validation exercise

described in section 3, I link synthetically corrupted copies to each-other using standard linking

algorithms. In this exercise, though, I shift the birth years of all individuals in one copy by a

decade. Consequently, links generated by this procedure are guaranteed not to correspond to the

same individual. At the same time, the outcomes Y1 and Y2, may be substantially correlated if

the information used to link is itself predictive of the latent outcome Y ∗.

Figure A.1 compares the empirical distribution of years of education in a sample of entirely in-

correct links to the predicted joint distribution of Y1 and Y2 from a record linkage misclassification

model, ∆RL
3 , assuming that the false positive linkage rate is one. The matrix on the left shows

that the relationship between the observed years of education is clearly not independent, despite

the fact that the data contain no actual “links.” However, the matrix on the right shows that

conditioning the misclassification model on the same linking controls as the validation exercise

largely matches the observed pattern of misclassification.

Figure A.1: Record linkage error illustration.
This figure compares the distribution of misclassification error in a sample with 100% record
linkage errors and the predicted distribution in a model of record linkage misclassification. The
matrix on the left shows the joint distribution of years of education in an exercise linking copies
of the 1940 census in which successful linkage was impossible. The matrix on the right shows the
predicted distribution of years of education on the same sample from a record linkage model of
misclassification, ∆RL

3 , assuming that all links in the sample are incorrect, α = 1.
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Appendix B Measuring Occupation Status

Economic historians have proposed a long list of measures for inferring occupation status. To

keep the estimand relatively consistent, each measure of occupation status I consider will be a

rank. Specifically, for each outcome Z,

1. I first compute a predicted value (such as a sample average) for that outcome Ẑk,c within a

demographic cell c for occupation k. The set of cells may be a singleton (i.e. the prediction

is constant for the full population with occupation j) or it may capture all the unique

combinations across multiple demographic factors, such as race, region, and cohort.

2. I then define the sample Pt of all men born in 10 year cohort t, observed at age 25-64 with

observed occupations (i.e. the OCC1950 code is not equal to 979, 983, 984, 986, or 999).

Let Nt be the sample size for each group Pt.

3. Last, I compute the sample percentile rank for each individual i ∈ Pt with occupation k(i)

and demographic cell c(i):

Yk(i),c(i),t :=
∑
j∈Pt

1
(
Ẑk(j),c(j) ≤ Ẑk(i),c(i)

)
/Nt

I report estimates of mobility defined using various ways of ranking occupations. The definition

of the population, outcome, and demographic cell are listed in table B.1. Note that even if the

measure of the outcome is constant within a cohort, the percentile rank for that occupation may

vary across time as the occupational distribution shifts. To illustrate: for the occupation rank

Education 1940, Z is years of education in the 1940 census, demographic cells include all unique

combinations of race, region, and birthplace. I then use empirical Bayes shrinkage assuming a

normal prior and likelihood to predict the average years of education within demographic cells.

Last, I construct the percentile rank for all individuals in each cohort between 1790 and 1950

using complete count censuses between 1850 and 1940, and various large samples between 1950

and 2017, following Ward (2023).
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Variable Name Population Outcome Demographic
Covariates

Prediction
Type

Inc. 1950 All Men age 25-64, complete
1950 census

Total Income Full Population Sample Mean

Edu. 1940 All Men age 25-64, complete
1940 and 1950 censuses

Years of Education Full Population Sample Mean

Inc. 1950 Men age 25-64, complete
1950 census

Total Income Race, Region,
Birthplace

Empirical Bayes

Edu. 1940 Men age 25-64, complete
1940 and 1950 censuses

Years of Education Race, Region,
Birthplace

Empirical Bayes

Song Men age 25-64, complete cen-
suses 1850-1940 and census /
ACS samples 1950-2017

Literacy before 1880,
Years of Education
thereafter

Cohort Sample Mean

Ward Men age 25-64, complete cen-
suses 1850-1940 and census /
ACS samples 1950-2017

Literacy before 1880,
Years of Education
thereafter

Race, Region,
Cohort

Sample Mean

Table B.1: Outcomes used to define occupation rankings.

This table collects definitions for the measures used to rank occupations and occupation × de-
mographic group cells. Empirical Bayes prediction assumes a normal-normal likelihood and prior
for outcome means across covariate cells. The variables Ward and Song are the average educa-
tional attainment and literacy within occupation before applying the rank transform as defined
in Ward (2023).
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Figure B.1: OLS estimates of the rank-rank association by occupation ranking.

This figure reports OLS estimates of the intergenerational association of occupation rank among
cohorts born between 1833 and 1910. The color and shape of each point corresponds to the
definition of occupation status used to rank occupations, as described in Table B.1. The year
corresponds to the census year in which father-son pairs are defined. Samples include sons age
0-17 in the base census year. To be included in the sample, sons must be observed over the age
of twenty in two census years. This sample was generated using linked data from the Census
Linking Project (Abramitzky et al., 2020).
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Appendix C Point identification of the nonparametric model

In this section, I connect the assumptions in section 2.1 to the identification result in Hu (2008),

which I will refer to as Hu Theorem. First, I restate the Hu Theorem using the original notation.

I then connect the assumptions and notation in this paper to that of Hu (2008).

C.1 Hu Theorem

The set up in Hu (2008) considers three variables: a dependent variable y, a latent true discrete

variable x∗ subject to misclassification error, and a vector of accurately measured independent

variables w. The conditional density of y on x∗ and w is denoted fy|x∗w(y|x∗, w). Researchers

observe an i.i.d. sample of the variables {x, y, w, z}, where x is a misclassified measure of x∗ and

z is an instrumental variable satisfying two assumptions:

Assumption H 1 fy|x∗xzw(y|x∗, x, z, w) = fy|x∗w(y|x∗, w).

Assumption H 2 fx|x∗zw(x|x∗, z, w) = fx|x∗w(x|x∗, w).

Suppose that x, x∗, and z∗ share the same support {1, ..., k}. The first additional assumption

requires that the instrument z is non-trivially related to the regressor x∗.

Assumption H 3 The matrix corresponding to the conditional distribution of the regressor on

the instrument has full rank:

rank


fx∗|zw(1|1, w) · · · fx∗|zw(k|1, w)

...
. . .

...

fx∗|zw(1|k,w) · · · fx∗|zw(k|k,w)

 = k

Similarly, we need to assume that measurement error in x is not irrecoverably severe:

Assumption H 4 The matrix of misclassification error, the conditional distribution of x given

x∗, is invertible:

det


fx|x∗w(1|1, w) · · · fx|x∗w(k|1, w)

...
. . .

...

fx|x∗w(1|k,w) · · · fx|x∗w(k|k,w)

 ̸= 0

Because the proof of Hu theorem relies on a spectral argument, we need an assumption that

guarantees the uniqueness of eigenvalues for a particular matrix.

Assumption H 5 There exists a function ω(·) such that, for all i ̸= j,

E[ω(y)|x∗ = i, w] ̸= E[ω(y)|x∗ = j, w]
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Finally, Hu (2008) lists four additional assumptions, any of which in conjunction with as-

sumptions H1-5, are sufficient for point identification of the nonparametric model. The first two

additional assumption consider notions of monotonicity in the relationship between y and x∗.

Assumption H 6 Given y and w, the conditional density fy,x∗w(y|x∗, w) is strictly increasing

or decreasing in x∗.

Assumption H 7 There exists a function ω(·) such that E[ω(y)|x∗, w] is strictly increasing in

x∗.

Alternatively, we can recover point identification by imposing additional assumptions on the

distribution of misclassification errors.

Assumption H 8 Pr(x = 1|x∗, w) is strictly decreasing in x∗ for x∗ ∈ {1, ..., k}.

Assumption H 9 Pr(x = i|x∗ = i, w) > Pr(x = j|x∗ = i, w) for j ̸= i.

We can now state the main result in Hu (2008).

Hu Theorem If Assumptions H1-5 hold, and at least one of Assumption H6, H7, H8, or H9

hold, then the densities fy|x∗w, fx|x∗w, and fx∗|zw are point identified.

C.2 Application to the nonparametric model of record linkage

Notation The set up in this paper differs slightly from that in Hu (2008). One immediately

apparent difference is the source of measurement error: in Hu (2008), the regressor x∗ is misclas-

sified, whereas the misclassified variable is the outcome Y ∗ in this paper. While this difference

appears substantial—as it is in the case of classical measurement error—the role of the instru-

ment, the regressor, and the outcome are mostly interchangeable in the nonparametric model of

misclassification (Hu, 2023). The mapping of variables between the two models is: the outcome

y is the regressor X; the latent regressor x∗ is the latent outcome Y ∗; the noisy regressor x is

the noisy outcome Y1; the instrument z is the second outcome Y2; and the controls w are labeled

similarly W . These differences are primarily differences in labels alone. The model in this paper

is simplified relative to the setting in (Hu, 2008) in one way: the regressor X is discrete, whereas

the outcome y in Hu (2008) may be continuous. Consequently, all of the target distribution func-

tions in this paper are finite dimensional while distribution functions involving y in Hu (2008)

may be infinite dimensional.
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Assumptions The first two Assumption H1 and H2 are together identical to 1. Assumption 2

implies Assumption 5. To see this, note that in the simpler setting with discrete X,

E[ω(X)|Y ∗ = yi,W ] =
∑
j≤J

Pr(X = xj |Y ∗ = yi,W )ω(xj)

Stacking this expression across values of Y ∗, the condition becomes: there exists a vector ω such

that Π·,iω ̸∝ Π·,jω for all i ̸= j. It is sufficient, then, for no pair of rows in Π to be proportional.

Assumption 3 immediately implies Assumption H9, since δii > 1/2 >
∑

j ̸=i δij ≥ δik for

each k ̸= i. Assumption 3 also implies Assumptions H3 and H4 by Gershgorin circle theorem,

which implies that all strongly diagonal dominant matrices with non-zero diagonal elements are

nonsingular, since zero lies outside all of the Gershgorin discs.

Thus, if Assumptions 1, 2, and 3 are satisfied, Hu Theorem applies, and the nonparametric

model is point identified.
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Appendix D Details on the misclassification estimator

I implement the maximum likelihood estimator for models of misclassification described in this

paper through a new R package. The R package misclassifyr allows for more general models

than the nonparametric set up in section 2. First, I allow the dimension of the regressorX to differ

from the outcome, and I denote it K. Additionally, I consider a weaker form of independence, in

which the noisy measures Y1 and Y2 are conditionally independent of the regressor but may be

mutually dependent:

Assumption 4 Measures are conditionally independent of the regressor:

X ⊥ Y1, Y2 | Y ∗,W

Under assumption 4, the conditional distribution of X,Y1, Y2 given W is:

Pr(X,Y1, Y2|W ) =
∑
y∗≤J

Pr(Y1, Y2|Y ∗ = y∗,W )Pr(Y ∗ = y∗, X|W )

The relaxed form of independence requires slightly different notation for the misclassification

matrices. Let he probability of observing Y1 = r and Y2 = s when the latent variable takes value

Y ∗ = q be denoted δ
(q)
r,s := Pr(Y1 = r, Y2 = s|Y ∗ = q). The probability of any misclassification is

summarized in the matrix ∆ = (∆1, ...,∆J) where

∆s :=


δ
(1
1,s · · · δ

(1)
J,s

...
. . .

...

δ
(J)
1,s · · · δ

(J)
J,s


The submatrices ∆s are indexed by the values of Y2 for simplicity of the likelihood expression. I

also consider a relaxed form of diagonal dominance:

Assumption 5 Misclassification is diagonal dominant: δii,k > δij,k and δik,i > δik,j for all k and

j ̸= i.

By Assumption 4, the probability of a particular realization of the triple (X,Y1, Y 2) = (q, r, s)

is:

Pr(X = r, Y1 = r, Y2 = s) =
∑
t≤J

Pr(X = r, Y ∗ = t)Pr(Y1 = r, Y2 = s|Y ∗ = t) = πt,qδ
(t)
r,s
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The expression for the full log likelihood is now:

ℓ(n|N, θ)− log c(n) =
∑

q≤K;r,s≤J

nq,r,s log
∑
t≤J

δ(t)r,sπt,q = n · log(vec(Π⊤∆)) (11)

where vec(M) flattens the matrix M column-wise. This expression naturally suggests estimating

θ by choosing θ̂ to maximize n · log(vec(Π⊤∆)).

The relaxed, minimal assumptions allow researchers to explore a wider class of models which

may not be point identified. Consequently, the package also builds-in tools for inference when

point identification fails.

D.1 Inference

The discrete nature of the problem suggests estimation of Π and ∆ via maximum likelihood. To

improve the numerical stability of the optimizer, a transform the parameters of Π and ∆ via the

logistic link function.

I then use a plug-in estimator for β. I use the delta method to estimate of the variance of the

misclassification estimator. To estimate the asymptotic covariance of the model parameters θ, I

use the inverse of the Fisher Information: Σ̂θ := I(θ̂)−1 where I(θ̂) := −H(θ̂) and H(θ) is the

Hessian H(θ̂)ij :=
∂2l(θ)
∂θi∂θj

∣∣∣
θ=θ̂

. I compute the covariances of Π and β via two applications of the

delta method:

Σ̂Π := Jg(θ̂)Σ̂θJg(θ̂)
⊤

where Jg is the Jacobian matrix of a map from the model parameters θ to the joint distribution

Π, and

Σ̂β := ∇f(Π̂)Σ̂Π∇f(Π̂)⊤

where f is a functional that maps the joint distribution of Y ∗ and X to the regression coefficient

β defined when Y ∗ and X have assigned scalar values.

Analytical confidence intervals through the delta method reflect sampling uncertainty in the

tabulation n. These confidence intervals may not have accurate size if (i) there is dependence

in the true data generating process that is not reflected in the iid sampling process described in

Section 2; (ii) if θ is near the boundary; or (iii) researchers consider models that do not satisfy

the assumptions for point identification.

The true data generating process for linked data certainly violates independence across observations—

for example, it’s very common to require linked samples to have at most one link per observation

in each data set. It’s less clear whether dependence in this form is likely to lead to substantial

undercoverage of confidence intervals based on iid assumptions.

To address the latter two concerns, the misclassifyr package includes the option to report
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highest posterior density sets (or projected highest posterior density sets) which have asymptot-

ically exact coverage (or conservative coverage for subvector inference), as shown in Chen et al.

(2018). Details on the implementation of the Gibbs sampler are in the package documentation.
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Appendix E Additional figures and tables

Figure E.1: Record linkage error estimates across control cells, 1940.
This figure shows the maximum likelihood estimates of the rate of record linkage error, α, in
a mixed model of misclassification applied to a sample linking observations in 1910-1940 and
1910-1930, in which the misclassification in 1940 has a record linkage error structure, ∆RL

3 , and
misclassification in 1930 is fully flexible.
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Figure E.2: OLS estimates of the rank-rank association for various linked samples.
This figure reports OLS estimates of the intergenerational association of occupation rank among
cohorts born between 1833 and 1910. The color and shape of each point corresponds to the
source of the linked data, which includes links from the Census Linking Project (Abramitzky
et al., 2020), the Census Tree (Price et al., 2021), and the Multigenerational Longitudinal Panel
(Helgertz et al., 2023). The year corresponds to the census year in which father-son pairs are
defined. Samples include sons age 0-17 in the base census year. To be included in the sample,
sons must be observed over the age of twenty in two census years. Occupation ranks are based
on the average educational attainment within occupation in the complete count 1940 and 1950
censuses.
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Figure E.3: Misclassification estimates of the rank-rank association by misclassification model.

This figure reports estimates of the intergenerational association of occupation rank among co-
horts born between 1833 and 1910. The color and shape of points corresponds to the estimator
used: OLS are shown in the pink crossed squares, and maximum likelihood estimates for various
models of misclassification are shown. Orange circles correspond to fully nonparametric models
of misclassification; olive triangles correspond to the record linkage model of misclassification
∆RL

1 ; solid green squares correspond to ∆RL
2 ; and the blue plus signs correspond to a mixed

model of misclassification in which ∆(1) = ∆RL
3 and ∆(2) is allowed to be fully flexible. The year

corresponds to the census year in which father-son pairs are defined. Samples include sons age
0-17 in the base census year. To be included in the sample, sons must be observed over the age
of twenty in two census years. These samples were generated using the standard version of the
ABE linked data using exact name matches from the Census Linking Project (Abramitzky et al.,
2020). Occupations are grouped into nine categories based on the “mesooccupation” classifica-
tion in Song et al. (2019).
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Figure E.4: Misclassification estimates of the rank-rank association by linked sample.

This figure reports estimates of the intergenerational association of occupation rank among co-
horts born between 1833 and 1910. OLS estimates are shown in orange and maximum likelihood
estimates for a model of misclassification are shown in blue. The shape of the points correspond
to the linked sample used, which includes links from the Census Linking Project (Abramitzky
et al., 2020) and the Census Tree (Price et al., 2021) Misclassification errors are assumed to have
a record linkage structure in the year of the main outcome, ∆(1) = ∆RL

3 , typically 30 years after
observed in childhood, and misclassification is allowed to be fully flexible in the repeated measure.
The year corresponds to the census year in which father-son pairs are defined. Samples include
sons age 0-17 in the base census year. To be included in the sample, sons must be observed over
the age of twenty in two census years. Occupations are grouped into nine categories based on the
“mesooccupation” classification in Song et al. (2019). Occupation rankings are defined by the
average educational attainment within occupation in the complete count 1940 and 1950 censuses.
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Figure E.5: Misclassification estimates of the rank-rank association by occupation ranking.
This figure reports estimates of the intergenerational association of occupation rank among co-
horts born between 1833 and 1910. OLS estimates are shown in orange and maximum likelihood
estimates for a model of misclassification are shown in blue. The shape of the points correspond
to the definition of the outcome used to define occupation ranks, as discussed in Appendix B.
Misclassification errors are assumed to have a record linkage structure in the year of the main
outcome, ∆(1) = ∆RL

3 , typically 30 years after observed in childhood, and misclassification is
allowed to be fully flexible in the repeated measure. The year corresponds to the census year in
which father-son pairs are defined. Samples include sons age 0-17 in the base census year. To be
included in the sample, sons must be observed over the age of twenty in two census years. These
samples were generated using the standard version of the ABE linked data using exact name
matches from the Census Linking Project (Abramitzky et al., 2020). Occupations are grouped
into nine categories based on the “mesooccupation” classification in Song et al. (2019).
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Table E.1: Comparison distances in the LIFE-M sample and the validation exercise.

This table presents the distribution of comparison distances in synthetic ground truth linked
samples and the LIFE-M sample. The first panel of the table reports the distribution of the
absolute value of the difference in birth year for individuals in each sample. The second and
third panels report the distribution of Jaro-Winkler string distances in the first and last names,
respectively. The LIFE-M sample is linked between the 1910 and 1940 censuses. The synthetic
ground truth is from one draw of the validation exercise. Census data are from the restricted
complete count samples (Ruggles et al., 2024).
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